130 research outputs found

    Past Visions of Artificial Futures: One Hundred and Fifty Years under the Spectre of Evolving Machines

    Full text link
    The influence of Artificial Intelligence (AI) and Artificial Life (ALife) technologies upon society, and their potential to fundamentally shape the future evolution of humankind, are topics very much at the forefront of current scientific, governmental and public debate. While these might seem like very modern concerns, they have a long history that is often disregarded in contemporary discourse. Insofar as current debates do acknowledge the history of these ideas, they rarely look back further than the origin of the modern digital computer age in the 1940s-50s. In this paper we explore the earlier history of these concepts. We focus in particular on the idea of self-reproducing and evolving machines, and potential implications for our own species. We show that discussion of these topics arose in the 1860s, within a decade of the publication of Darwin's The Origin of Species, and attracted increasing interest from scientists, novelists and the general public in the early 1900s. After introducing the relevant work from this period, we categorise the various visions presented by these authors of the future implications of evolving machines for humanity. We suggest that current debates on the co-evolution of society and technology can be enriched by a proper appreciation of the long history of the ideas involved.Comment: To appear in Proceedings of the Artificial Life Conference 2018 (ALIFE 2018), MIT Pres

    Digital Genesis: Computers, Evolution and Artificial Life

    Full text link
    The application of evolution in the digital realm, with the goal of creating artificial intelligence and artificial life, has a history as long as that of the digital computer itself. We illustrate the intertwined history of these ideas, starting with the early theoretical work of John von Neumann and the pioneering experimental work of Nils Aall Barricelli. We argue that evolutionary thinking and artificial life will continue to play an integral role in the future development of the digital world.Comment: Extended abstract of talk presented at the 7th Munich-Sydney-Tilburg Philosophy of Science Conference: Evolutionary Thinking, University of Sydney, 20-22 March 2014. Presentation slides from talk available at http://www.tim-taylor.com/papers/digital-genesis-presentation.pd

    Colour reverse learning and animal personalities: the advantage of behavioural diversity assessed with agent-based simulations

    Get PDF
    Foraging bees use colour cues to help identify rewarding from unrewarding flowers, but as conditions change, bees may require behavioural flexibility to reverse their learnt preferences. Perceptually similar colours are learnt slowly by honeybees and thus potentially pose a difficult task to reverse-learn. Free-flying honeybees (N = 32) were trained to learn a fine colour discrimination task that could be resolved at ca. 70% accuracy following extended differential conditioning, and were then tested for their ability to reverse-learn this visual problem multiple times. Subsequent analyses identified three different strategies: ‘Deliberative-decisive’ bees that could, after several flower visits, decisively make a large change to learnt preferences; ‘Fickle- circumspect’ bees that changed their preferences by a small amount every time they encountered evidence in their environment; and ‘Stay’ bees that did not change from their initially learnt preference. The next aim was to determine if there was any advantage to a colony in maintaining bees with a variety of decision-making strategies. To understand the potential benefits of the observed behavioural diversity agent-based computer simulations were conducted by systematically varying parameters for flower reward switch oscillation frequency, flower handling time, and fraction of defective ‘target’ stimuli. These simulations revealed that when there is a relatively high frequency of reward reversals, fickle-circumspect bees are more efficient at nectar collection. However, as the reward reversal frequency decreases the performance of deliberative-decisive bees becomes most efficient. These findings show there to be an evolutionary benefit for honeybee colonies with individuals exhibiting these different strategies for managing resource change. The strategies have similarities to some complex decision-making processes observed in humans, and algorithms implemented in artificial intelligence systems

    Image background assessment as a novel technique for insect microhabitat identification

    Full text link
    The effects of climate change, urbanisation and agriculture are changing the way insects occupy habitats. Some species may utilise anthropogenic microhabitat features for their existence, either because they prefer them to natural features, or because of no choice. Other species are dependent on natural microhabitats. Identifying and analysing these insects' use of natural and anthropogenic microhabitats is important to assess their responses to a changing environment, for improving pollination and managing invasive pests. Traditional studies of insect microhabitat use can now be supplemented by machine learning-based insect image analysis. Typically, research has focused on automatic insect classification, but valuable data in image backgrounds has been ignored. In this research, we analysed the image backgrounds available on the ALA database to determine their microhabitats. We analysed the microhabitats of three insect species common across Australia: Drone flies, European honeybees and European wasps. Image backgrounds were classified as natural or anthropogenic microhabitats using computer vision and machine learning tools benchmarked against a manual classification algorithm. We found flies and honeybees in natural microhabitats, confirming their need for natural havens within cities. Wasps were commonly seen in anthropogenic microhabitats. Results show these insects are well adapted to survive in cities. Management of this invasive pest requires a thoughtful reduction of their access to human-provided resources. The assessment of insect image backgrounds is instructive to document the use of microhabitats by insects. The method offers insight that is increasingly vital for biodiversity management as urbanisation continues to encroach on natural ecosystems and we must consciously provide resources within built environments to maintain insect biodiversity and manage invasive pests.Comment: Submitted in Ecological Informatics journal, first review completed, 19 pages, 10 figure

    Assessing the carbon footprint of digital health interventions: a scoping review

    Get PDF
    Objective: Integration of environmentally sustainable digital health interventions requires robust evaluation of their carbon emission life-cycle before implementation in healthcare. This scoping review surveys the evidence on available environmental assessment frameworks, methods, and tools to evaluate the carbon footprint of digital health interventions for environmentally sustainable healthcare.Materials and methods: Medline (Ovid), Embase (Ovid). PsycINFO (Ovid), CINAHL, Web of Science, Scopus (which indexes IEEE Xplore, Springer Lecture Notes in Computer Science and ACM databases), Compendex, and Inspec databases were searched with no time or language constraints. The Systematic Reviews and Meta-analyses Extension for Scoping Reviews (PRISMA_SCR), Joanna Briggs Scoping Review Framework, and template for intervention description and replication (TiDiER) checklist were used to structure and report the findings.Results: From 3299 studies screened, data was extracted from 13 full-text studies. No standardised methods or validated tools were identified to systematically determine the environmental sustainability of a digital health intervention over its full life-cycle from conception to realisation. Most studies (n = 8) adapted publicly available carbon calculators to estimate telehealth travel-related emissions. Others adapted these tools to examine the environmental impact of electronic health records (n = 2), e-prescriptions and e-referrals (n = 1), and robotic surgery (n = 1). One study explored optimising the information system electricity consumption of telemedicine. No validated systems-based approach to evaluation and validation of digital health interventions could be identified.Conclusion: There is a need to develop standardised, validated methods and tools for healthcare environments to assist stakeholders to make informed decisions about reduction of carbon emissions from digital health interventions.</p

    Partial Deletion of Chromosome 8 β-defensin Cluster Confers Sperm Dysfunction and Infertility in Male Mice

    Get PDF
    β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9) in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients
    • …
    corecore